A nonintrusive hybrid neural-physics modeling of incomplete dynamical systems: Lorenz equations

نویسندگان

چکیده

This work presents a hybrid modeling approach to data-driven learning and representation of unknown physical processes closure parameterizations. These models are suitable for situations where the mechanistic description dynamics some variables is unknown, but reasonably accurate observational data can be obtained evolution state system. In this work, we propose machine account missing physics then assimilation correct prediction. particular, devise an effective methodology based on recurrent neural network model dynamics. A long short-term memory (LSTM) correction term added predictive in order take into hidden physics. Since LSTM introduces black-box part model, investigate whether proposed neural-physical further corrected through sequential step. We apply framework weakly nonlinear Lorenz that displays quasiperiodic oscillations, highly chaotic two-scale model. The neural-physics yields results with predicted close true trajectory. For deviates from due accumulation prediction error one time step next ensemble Kalman filter takes updates diverged using available observations provide more estimate successful synergistic integration low-dimensional system shows potential benefits hybrid-neural complex dynamical systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation analysis and dynamics of a Lorenz –type dynamical system 

./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...

متن کامل

Hybrid modeling and prediction of dynamical systems

Scientific analysis often relies on the ability to make accurate predictions of a system's dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. ...

متن کامل

observational dynamical systems

چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...

15 صفحه اول

Toward a Modeling Language Standard for Hybrid Dynamical Systems

A rigorous means for modeling and evaluating hybrid systems is needed for the efficient and cost-effective development of embedded real-time software for a wide variety of applications (weapons, manufacturing, intelligent vehicles, process control, . . . ). The development of a standard hybrid systems modeling language (SHSML) and corresponding rigorous simulation environments represent importa...

متن کامل

jordan c-dynamical systems

in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Gem - International Journal on Geomathematics

سال: 2021

ISSN: ['1869-2680', '1869-2672']

DOI: https://doi.org/10.1007/s13137-021-00185-z